Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(10): 869, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229456

RESUMO

Acute megakaryocytic leukemia (AMKL) is a clinically heterogeneous subtype of acute myeloid leukemia characterized by unrestricted megakaryoblast proliferation and poor prognosis. Thrombopoietin receptor c-Mpl is a primary regulator of megakaryopoeisis and a potent mitogenic receptor. Aberrant c-Mpl signaling has been implicated in a myriad of myeloid proliferative disorders, some of which can lead to AMKL, however, the role of c-Mpl in AMKL progression remains largely unexplored. Here, we identified increased expression of a c-Mpl alternative splicing isoform, c-Mpl-del, in AMKL patients. We found that c-Mpl-del expression was associated with enhanced AMKL cell proliferation and chemoresistance, and decreased survival in xenografted mice, while c-Mpl-del knockdown attenuated proliferation and restored apoptosis. Interestingly, we observed that c-Mpl-del exhibits preferential utilization of phosphorylated c-Mpl-del C-terminus Y607 and biased activation of PI3K/AKT pathway, which culminated in upregulation of GATA1 and downregulation of DDIT3-related apoptotic responses conducive to AMKL chemoresistance and proliferation. Thus, this study elucidates the critical roles of c-Mpl alternative splicing in AMKL progression and drug resistance, which may have important diagnostic and therapeutic implications for leukemia accelerated by c-Mpl-del overexpression.


Assuntos
Leucemia Megacarioblástica Aguda , Receptores de Trombopoetina , Processamento Alternativo/genética , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Megacarioblástica Aguda/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo , Trombopoetina/metabolismo
2.
Sci Rep ; 11(1): 11663, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083615

RESUMO

The interaction of platelet GPIbα with von Willebrand factor (VWF) is essential to initiate platelet adhesion and thrombosis, particularly under high shear stress conditions. However, no drug targeting GPIbα has been developed for clinical practice. Here we characterized anfibatide, a GPIbα antagonist purified from snake (Deinagkistrodon acutus) venom, and evaluated its interaction with GPIbα by surface plasmon resonance and in silico modeling. We demonstrated that anfibatide interferds with both VWF and thrombin binding, inhibited ristocetin/botrocetin- and low-dose thrombin-induced human platelet aggregation, and decreased thrombus volume and stability in blood flowing over collagen. In a single-center, randomized, and open-label phase I clinical trial, anfibatide was administered intravenously to 94 healthy volunteers either as a single dose bolus, or a bolus followed by a constant rate infusion of anfibatide for 24 h. Anfibatide inhibited VWF-mediated platelet aggregation without significantly altering bleeding time or coagulation. The inhibitory effects disappeared within 8 h after drug withdrawal. No thrombocytopenia or anti-anfibatide antibodies were detected, and no serious adverse events or allergic reactions were observed during the studies. Therefore, anfibatide was well-tolerated among healthy subjects. Interestingly, anfibatide exhibited pharmacologic effects in vivo at concentrations thousand-fold lower than in vitro, a phenomenon which deserves further investigation.Trial registration: Clinicaltrials.gov NCT01588132.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Venenos de Crotalídeos/uso terapêutico , Fibrinolíticos/uso terapêutico , Lectinas Tipo C/uso terapêutico , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Venenos de Serpentes/uso terapêutico , Animais , Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/química , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacocinética , Crotalinae , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacocinética , Voluntários Saudáveis , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/isolamento & purificação , Modelos Moleculares , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Contagem de Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Ligação Proteica , Conformação Proteica , Ristocetina/farmacologia , Venenos de Serpentes/química , Venenos de Serpentes/isolamento & purificação , Venenos de Serpentes/farmacocinética , Relação Estrutura-Atividade , Trombina/farmacologia , Trombose/prevenção & controle , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
3.
Food Funct ; 11(1): 139-152, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31755492

RESUMO

Coenzyme Q10 (CoQ10) exists in a wide variety of foods and has promising cardiovascular benefits. However, its effects on platelets and integrin αIIbß3 signaling during atherosclerosis have not been previously explored. Here, apolipoprotein E-deficient (ApoE-/-) mice were fed a standard diet, high-fat diet (HFD) or CoQ10-supplemented HFD for 12 weeks. We found that CoQ10 supplementation in ApoE-/- mice significantly alleviated formation of HFD-induced atherosclerotic lesions, and attenuated platelet hyper-aggregation and granule secretion, including CD62P, CD63 and CD40 ligand (CD40L) expression and platelet factor-4, ß-thromboglobulin and activation normal T cell expressed and secreted (CCL5) release. CoQ10 supplementation decreased soluble fibrinogen and JON/A binding to αIIbß3 on activated platelets, indicating that αIIbß3-mediated inside-out signaling was attenuated. Additionally, CoQ10 down-regulated platelet αIIbß3 outside-in signaling including decreasing phosphorylation of the ß3 intracellular tail, cellular and sarcoma tyrosine-protein kinase (c-Src), and myosin light chain (MLC), and consistently attenuating platelet spreading and clot retraction. Importantly, platelet-monocyte aggregation that was primarily mediated by αIIbß3 and can be blocked using an αIIbß3-specific antagonist tirofiban was also markedly diminished by CoQ10. Thus, CoQ10 supplementation attenuates platelet hyper-reactivity via down-regulating both αIIbß3 inside-out and outside-in signaling, which may play important preventive roles in atherothrombosis.


Assuntos
Aterosclerose/tratamento farmacológico , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Retração do Coágulo , Masculino , Camundongos , Camundongos Knockout para ApoE , Ubiquinona/uso terapêutico
4.
Mol Nutr Food Res ; 63(23): e1900662, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512815

RESUMO

SCOPE: Platelet integrin αIIbß3 is the key mediator of atherothrombosis. Supplementation of coenzyme Q10 (CoQ10), a fat-soluble molecule that exists in various foods, exerts protective cardiovascular effects. This study aims to investigate whether and how CoQ10 acts on αIIbß3 signaling and thrombosis, the major cause of cardiovascular diseases. METHODS AND RESULTS: Using a series of platelet functional assays in vitro, it is demonstrated that CoQ10 reduces human platelet aggregation, granule secretion, platelet spreading, and clot retraction. It is further demonstrated that CoQ10 inhibits platelet integrin αIIbß3 outside-in signaling. These inhibitory effects are mainly mediated by upregulating cAMP/PKA pathway, where CoQ10 stimulates the A2A adenosine receptor and decreases phosphodiesterase 3A phosphorylation. Moreover, CoQ10 attenuates murine thrombus growth and vessel occlusion in a ferric chloride (FeCl3 )-induced thrombosis model in vivo. Importantly, the randomized, double-blind, placebo-controlled clinical trial in dyslipidemic patients demonstrates that 24 weeks of CoQ10 supplementation increases platelet CoQ10 concentrations, enhances the cAMP/PKA pathway, and attenuates αIIbß3 outside-in signaling, leading to decreased platelet aggregation and granule release. CONCLUSION: Through upregulating the platelet cAMP/PKA pathway, and attenuating αIIbß3 signaling and thrombus growth, CoQ10 supplementation may play an important protective role in patients with risks of cardiovascular diseases.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/fisiologia , Trombose/prevenção & controle , Ubiquinona/análogos & derivados , Adulto , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Método Duplo-Cego , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Receptor A2A de Adenosina/fisiologia , Transdução de Sinais/fisiologia , Ubiquinona/farmacologia , Regulação para Cima
5.
Nat Commun ; 9(1): 3608, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190457

RESUMO

Platelet αIIbß3 integrin and its ligands are essential for thrombosis and hemostasis, and play key roles in myocardial infarction and stroke. Here we show that apolipoprotein A-IV (apoA-IV) can be isolated from human blood plasma using platelet ß3 integrin-coated beads. Binding of apoA-IV to platelets requires activation of αIIbß3 integrin, and the direct apoA-IV-αIIbß3 interaction can be detected using a single-molecule Biomembrane Force Probe. We identify that aspartic acids 5 and 13 at the N-terminus of apoA-IV are required for binding to αIIbß3 integrin, which is additionally modulated by apoA-IV C-terminus via intra-molecular interactions. ApoA-IV inhibits platelet aggregation and postprandial platelet hyperactivity. Human apoA-IV plasma levels show a circadian rhythm that negatively correlates with platelet aggregation and cardiovascular events. Thus, we identify apoA-IV as a novel ligand of αIIbß3 integrin and an endogenous inhibitor of thrombosis, establishing a link between lipoprotein metabolism and cardiovascular diseases.


Assuntos
Apolipoproteínas A/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/metabolismo , Adulto , Animais , Apolipoproteínas A/genética , Apolipoproteínas A/farmacologia , Ácido Aspártico/metabolismo , Sítios de Ligação , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Período Pós-Prandial , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Trombose/tratamento farmacológico
6.
Blood ; 131(16): 1777-1789, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29519806

RESUMO

Platelets have long been recognized as key players in hemostasis and thrombosis; however, growing evidence suggests that they are also significantly involved in cancer, the second leading cause of mortality worldwide. Preclinical and clinical studies showed that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between platelets and cancer cells. For example, cancer changes platelet behavior by directly inducing tumor-platelet aggregates, triggering platelet granule and extracellular vesicle release, altering platelet phenotype and platelet RNA profiles, and enhancing thrombopoiesis. Reciprocally, platelets reinforce tumor growth with proliferation signals, antiapoptotic effect, and angiogenic factors. Platelets also activate tumor invasion and sustain metastasis via inducing an invasive epithelial-mesenchymal transition phenotype of tumor cells, promoting tumor survival in circulation, tumor arrest at the endothelium, and extravasation. Furthermore, platelets assist tumors in evading immune destruction. Hence, cancer cells and platelets maintain a complex, bidirectional communication. Recently, aspirin (acetylsalicylic acid) has been recognized as a promising cancer-preventive agent. It is recommended at daily low dose by the US Preventive Services Task Force for primary prevention of colorectal cancer. The exact mechanisms of action of aspirin in chemoprevention are not very clear, but evidence has emerged that suggests a platelet-mediated effect. In this article, we will introduce how cancer changes platelets to be more cancer-friendly and highlight advances in the modes of action for aspirin in cancer prevention. We also discuss the opportunities, challenges, and opposing viewpoints on applying aspirin and other antiplatelet agents for cancer prevention and treatment.


Assuntos
Aspirina/uso terapêutico , Plaquetas , Comunicação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias , Inibidores da Agregação Plaquetária/uso terapêutico , Plaquetas/metabolismo , Plaquetas/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/prevenção & controle , Vesículas Secretórias/metabolismo , Vesículas Secretórias/patologia
7.
Blood ; 129(13): 1840-1854, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28122739

RESUMO

Integrins are a large family of heterodimeric transmembrane receptors differentially expressed on almost all metazoan cells. Integrin ß subunits contain a highly conserved plexin-semaphorin-integrin (PSI) domain. The CXXC motif, the active site of the protein-disulfide-isomerase (PDI) family, is expressed twice in this domain of all integrins across species. However, the role of the PSI domain in integrins and whether it contains thiol-isomerase activity have not been explored. Here, recombinant PSI domains of murine ß3, and human ß1 and ß2 integrins were generated and their PDI-like activity was demonstrated by refolding of reduced/denatured RNase. We identified that both CXXC motifs of ß3 integrin PSI domain are required to maintain its optimal PDI-like activity. Cysteine substitutions (C13A and C26A) of the CXXC motifs also significantly decreased the PDI-like activity of full-length human recombinant ß3 subunit. We further developed mouse anti-mouse ß3 PSI domain monoclonal antibodies (mAbs) that cross-react with human and other species. These mAbs inhibited αIIbß3 PDI-like activity and its fibrinogen binding. Using single-molecular Biomembrane-Force-Probe assays, we demonstrated that inhibition of αIIbß3 endogenous PDI-like activity reduced αIIbß3-fibrinogen interaction, and these anti-PSI mAbs inhibited fibrinogen binding via different levels of both PDI-like activity-dependent and -independent mechanisms. Importantly, these mAbs inhibited murine/human platelet aggregation in vitro and ex vivo, and murine thrombus formation in vivo, without significantly affecting bleeding time or platelet count. Thus, the PSI domain is a potential regulator of integrin activation and a novel target for antithrombotic therapies. These findings may have broad implications for all integrin functions, and cell-cell and cell-matrix interactions.


Assuntos
Cadeias beta de Integrinas/imunologia , Isomerases de Dissulfetos de Proteínas/imunologia , Motivos de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Domínio Catalítico , Moléculas de Adesão Celular , Humanos , Camundongos , Proteínas do Tecido Nervoso , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Proteínas Recombinantes , Semaforinas , Trombose/prevenção & controle
8.
Thromb J ; 14(Suppl 1): 29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27766055

RESUMO

Platelets are central mediators of thrombosis and hemostasis. At the site of vascular injury, platelet accumulation (i.e. adhesion and aggregation) constitutes the first wave of hemostasis. Blood coagulation, initiated by the coagulation cascades, is the second wave of thrombin generation and enhance phosphatidylserine exposure, can markedly potentiate cell-based thrombin generation and enhance blood coagulation. Recently, deposition of plasma fibronectin and other proteins onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that occurs prior to platelet accumulation (i.e. the classical first wave of hemostasis). These three waves of hemostasis, in the event of atherosclerotic plaque rupture, may turn pathogenic, and cause uncontrolled vessel occlusion and thrombotic disorders (e.g. heart attack and stroke). Current anti-platelet therapies have significantly reduced cardiovascular mortality, however, on-treatment thrombotic events, thrombocytopenia, and bleeding complications are still major concerns that continue to motivate innovation and drive therapeutic advances. Emerging evidence has brought platelet adhesion molecules back into the spotlight as targets for the development of novel anti-thrombotic agents. These potential antiplatelet targets mainly include the platelet receptors glycoprotein (GP) Ib-IX-V complex, ß3 integrins (αIIb subunit and PSI domain of ß3 subunit) and GPVI. Numerous efforts have been made aiming to balance the efficacy of inhibiting thrombosis without compromising hemostasis. This mini-review will update the mechanisms of thrombosis and the current state of antiplatelet therapies, and will focus on platelet adhesion molecules and the novel anti-thrombotic therapies that target them.

9.
Crit Rev Clin Lab Sci ; 53(6): 409-30, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27282765

RESUMO

Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.


Assuntos
Plaquetas , Hemostasia , Metástase Neoplásica , Trombose , Humanos , Inflamação , Trombocitopenia
10.
Thromb Res ; 141 Suppl 2: S76-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27207432

RESUMO

Platelets are small versatile blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. Platelet accumulation (adhesion and aggregation) at the site of injury has been considered the first wave of hemostasis. Interestingly, although fibrinogen and von Willebrand factor (VWF) are documented to be essential for hemostasis, fibrinogen/VWF-independent platelet aggregation and thrombosis still occur. Following platelet activation and phosphatidylserine expression, platelets also contribute to cell-based thrombin generation and blood coagulation - the second wave of hemostasis. Most recently, deposition of fibronectin and other plasma proteins onto the injured vessel wall was identified as a "protein wave" of hemostasis, in which platelets may release their granule proteins and thus also contribute to this very early hemostatic event. Due to the central roles of platelets in hemostasis, excessive platelet clearance may lead to bleeding disorders as observed in auto- and alloimmune-mediated thrombocytopenias. In this review, we will introduce several new pathways of thrombosis and hemostasis as well as antibody Fc-independent platelet clearance, which may play an important role in immune-mediated thrombocytopenias. We will also discuss the roles of platelets in fetal hemostasis that may deserve further investigation.


Assuntos
Plaquetas/patologia , Hemorragia/patologia , Hemostasia , Trombocitopenia/patologia , Animais , Plaquetas/imunologia , Hemorragia/sangue , Hemorragia/imunologia , Humanos , Imunidade , Trombocitopenia/sangue , Trombocitopenia/imunologia , Trombose/sangue , Trombose/imunologia , Trombose/patologia
11.
Diabetes ; 65(6): 1714-23, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26936963

RESUMO

Short-term studies in subjects with diabetes receiving glucagon-like peptide 1 (GLP-1)-targeted therapies have suggested a reduced number of cardiovascular events. The mechanisms underlying this unexpectedly rapid effect are not known. We cloned full-length GLP-1 receptor (GLP-1R) mRNA from a human megakaryocyte cell line (MEG-01), and found expression levels of GLP-1Rs in MEG-01 cells to be higher than those in the human lung but lower than in the human pancreas. Incubation with GLP-1 and the GLP-1R agonist exenatide elicited a cAMP response in MEG-01 cells, and exenatide significantly inhibited thrombin-, ADP-, and collagen-induced platelet aggregation. Incubation with exenatide also inhibited thrombus formation under flow conditions in ex vivo perfusion chambers using human and mouse whole blood. In a mouse cremaster artery laser injury model, a single intravenous injection of exenatide inhibited thrombus formation in normoglycemic and hyperglycemic mice in vivo. Thrombus formation was greater in mice transplanted with bone marrow lacking a functional GLP-1R (Glp1r(-/-)), compared with those receiving wild-type bone marrow. Although antithrombotic effects of exenatide were partly lost in mice transplanted with bone marrow from Glp1r(-/-) mice, they were undetectable in mice with a genetic deficiency of endothelial nitric oxide synthase. The inhibition of platelet function and the prevention of thrombus formation by GLP-1R agonists represent potential mechanisms for reduced atherothrombotic events.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peptídeos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Trombose/prevenção & controle , Peçonhas/farmacologia , Animais , Linhagem Celular , Exenatida , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Pulmão/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo III/deficiência , Pâncreas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...